Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.

Identifieur interne : 001514 ( Main/Exploration ); précédent : 001513; suivant : 001515

Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.

Auteurs : Benjamin Selles [France] ; Flavien Zannini [France] ; Jérémy Couturier [France] ; Jean-Pierre Jacquot [France] ; Nicolas Rouhier [France]

Source :

RBID : pubmed:28362814

Descripteurs français

English descriptors

Abstract

Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.

DOI: 10.1371/journal.pone.0174753
PubMed: 28362814
PubMed Central: PMC5375154


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.</title>
<author>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zannini, Flavien" sort="Zannini, Flavien" uniqKey="Zannini F" first="Flavien" last="Zannini">Flavien Zannini</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28362814</idno>
<idno type="pmid">28362814</idno>
<idno type="doi">10.1371/journal.pone.0174753</idno>
<idno type="pmc">PMC5375154</idno>
<idno type="wicri:Area/Main/Corpus">001383</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001383</idno>
<idno type="wicri:Area/Main/Curation">001383</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001383</idno>
<idno type="wicri:Area/Main/Exploration">001383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.</title>
<author>
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zannini, Flavien" sort="Zannini, Flavien" uniqKey="Zannini F" first="Flavien" last="Zannini">Flavien Zannini</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<affiliation wicri:level="3">
<nlm:affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Vandœuvre-lès-Nancy</settlement>
<settlement type="city" wicri:auto="agglo">Nancy</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Dithionitrobenzoic Acid (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Insulin (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Malate Dehydrogenase (NADP+) (chemistry)</term>
<term>Malate Dehydrogenase (NADP+) (genetics)</term>
<term>Malate Dehydrogenase (NADP+) (metabolism)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Protein Disulfide-Isomerases (chemistry)</term>
<term>Protein Disulfide-Isomerases (genetics)</term>
<term>Protein Disulfide-Isomerases (metabolism)</term>
<term>Protein Isoforms (chemistry)</term>
<term>Protein Isoforms (genetics)</term>
<term>Protein Isoforms (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Sulfides (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>5,5'-Dithiobis(acide 2-nitro-benzoïque) (métabolisme)</term>
<term>Catalyse (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Insuline (métabolisme)</term>
<term>Isoformes de protéines (composition chimique)</term>
<term>Isoformes de protéines (génétique)</term>
<term>Isoformes de protéines (métabolisme)</term>
<term>Malate dehydrogenase (NADP+) (composition chimique)</term>
<term>Malate dehydrogenase (NADP+) (génétique)</term>
<term>Malate dehydrogenase (NADP+) (métabolisme)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Protein Disulfide-Isomerases (composition chimique)</term>
<term>Protein Disulfide-Isomerases (génétique)</term>
<term>Protein Disulfide-Isomerases (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sulfures (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Thioredoxin-disulfide reductase (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Malate Dehydrogenase (NADP+)</term>
<term>Oxidoreductases</term>
<term>Protein Disulfide-Isomerases</term>
<term>Protein Isoforms</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Malate Dehydrogenase (NADP+)</term>
<term>Oxidoreductases</term>
<term>Protein Disulfide-Isomerases</term>
<term>Protein Isoforms</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dithionitrobenzoic Acid</term>
<term>Insulin</term>
<term>Iron</term>
<term>Malate Dehydrogenase (NADP+)</term>
<term>Oxidoreductases</term>
<term>Peroxiredoxins</term>
<term>Protein Disulfide-Isomerases</term>
<term>Protein Isoforms</term>
<term>Sulfides</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Malate dehydrogenase (NADP+)</term>
<term>Oxidoreductases</term>
<term>Protein Disulfide-Isomerases</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Isoformes de protéines</term>
<term>Malate dehydrogenase (NADP+)</term>
<term>Oxidoreductases</term>
<term>Protein Disulfide-Isomerases</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>5,5'-Dithiobis(acide 2-nitro-benzoïque)</term>
<term>Fer</term>
<term>Insuline</term>
<term>Isoformes de protéines</term>
<term>Malate dehydrogenase (NADP+)</term>
<term>Oxidoreductases</term>
<term>Peroxirédoxines</term>
<term>Protein Disulfide-Isomerases</term>
<term>Sulfures</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Catalysis</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Mutagenesis, Site-Directed</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Concentration en ions d'hydrogène</term>
<term>Humains</term>
<term>Mutagenèse dirigée</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28362814</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.</ArticleTitle>
<Pagination>
<MedlinePgn>e0174753</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0174753</ELocationID>
<Abstract>
<AbstractText>Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b'-a' and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Selles</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zannini</LastName>
<ForeName>Flavien</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Couturier</LastName>
<ForeName>Jérémy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jacquot</LastName>
<ForeName>Jean-Pierre</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rouhier</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2036-7884</Identifier>
<AffiliationInfo>
<Affiliation>UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020033">Protein Isoforms</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013440">Sulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9BZQ3U62JX</RegistryNumber>
<NameOfSubstance UI="D004228">Dithionitrobenzoic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.82</RegistryNumber>
<NameOfSubstance UI="D050538">Malate Dehydrogenase (NADP+)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.3.4.1</RegistryNumber>
<NameOfSubstance UI="D019704">Protein Disulfide-Isomerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004228" MajorTopicYN="N">Dithionitrobenzoic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050538" MajorTopicYN="N">Malate Dehydrogenase (NADP+)</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019704" MajorTopicYN="N">Protein Disulfide-Isomerases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020033" MajorTopicYN="N">Protein Isoforms</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013440" MajorTopicYN="N">Sulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28362814</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0174753</ArticleId>
<ArticleId IdType="pii">PONE-D-17-05126</ArticleId>
<ArticleId IdType="pmc">PMC5375154</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Aug 5;286(31):27515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Jul 18;380(4):667-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18565543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 26;282(4):2626-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Sep 17;285(38):29200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jan 13;124(1):61-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Sep 09;5:13909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26350503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Jan 9;357(3):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7835433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2009 Nov;146(5):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19567379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 1;278(31):28912-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12761212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Open Bio. 2014 Aug 01;4:730-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25161881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Mar 28;39(12):3344-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10727227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Oct;43(10):1238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12407204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Oct 2;392(4):952-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19631659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Apr 1;411(1):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):762-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 4;36(9):2622-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9054569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 19;9(8):e105529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25137134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2104-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24481254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Jul 1;255(1):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9692918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Oct 1;359(Pt 1):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11563970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2006 Dec;84(6):881-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jun;159(2):592-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2011 Jan;97(1):37-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 28;117(5):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 10;284(15):10150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct;13(8):1217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20136510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2010 Nov;67(22):3797-814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1109-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2807-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19476414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 Aug;276(15):4130-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19583593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 16;488(7411):414-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22801504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 6;287(2):1139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22090031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jan 2;335(1):283-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Aug 26;392(2):121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8772188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 May;275(10):2644-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):210-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2010 Oct;277(19):3924-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20796029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21094149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Jul 24;4:259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23898337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Jun 22;589(14):1559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25957772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 5;324(5932):1284-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2002 Sep;132(3):451-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12204115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Feb;275(3):399-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18167147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jan;10(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17939758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct;13(8):1205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20136512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Dec 1;122(Pt 23):4287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19887585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14156-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jan 22;30(3):619-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1988051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2014 Dec;281(23):5341-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25265152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Dec 15;29(24):4185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Apr 3;284(14):9299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19158074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Aug;14(8):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Apr;1783(4):535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2015 Oct 27;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26381228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Feb;274(3):687-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17181539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Aug 18;289(5482):1190-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10947986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
<li>Vandœuvre-lès-Nancy</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Selles, Benjamin" sort="Selles, Benjamin" uniqKey="Selles B" first="Benjamin" last="Selles">Benjamin Selles</name>
</region>
<name sortKey="Couturier, Jeremy" sort="Couturier, Jeremy" uniqKey="Couturier J" first="Jérémy" last="Couturier">Jérémy Couturier</name>
<name sortKey="Jacquot, Jean Pierre" sort="Jacquot, Jean Pierre" uniqKey="Jacquot J" first="Jean-Pierre" last="Jacquot">Jean-Pierre Jacquot</name>
<name sortKey="Rouhier, Nicolas" sort="Rouhier, Nicolas" uniqKey="Rouhier N" first="Nicolas" last="Rouhier">Nicolas Rouhier</name>
<name sortKey="Zannini, Flavien" sort="Zannini, Flavien" uniqKey="Zannini F" first="Flavien" last="Zannini">Flavien Zannini</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001514 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001514 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28362814
   |texte=   Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28362814" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020